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Abstract 

A brief description of problems in the stress analysis of solid propellant rocket 
motors is given with a short review of related recent literature. The general linear 
viscoelastic and elastic problem, some possible means of solution, and the hy- 
potheses and assumptions involved are discussed, A brief account of the computer 
program ELAS for elastic analyses is given. Solutions of typical two- and three- 
dimensional problems are presented and compared with those obtained by others. 
The effect of Poisson’s ratio close to 0.5 on the computed results has been evalu- 
ated and is discussed. Possible future developments of the numerical methods 
of analysis in connection with available theories and analytical works are outlined. 
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Stress Analysis of Solid Propellant Rocket Motors 

1. Introduction 

Problems in the aerospace industry are often associated 
with the structural integrity of solid propellant grains. 
Although research in this area is beginning to be used 
effectively, further work is required to establish stress 
analysis as a reliable engineering tool in the design of 
structurally sound propellant grains consisting of non- 
linear viscoelastic materials with mechanical properties 
that are highly sensitive to temperature. 

The ultimate goal of solid propellant stress analysis is 
to determine deformation and stress histories in propel- 
lants and casings of rocket motors and to predict internal 
geometrical integrity, fracture, and failure. This requires 
a thorough understanding of solid propellant material 
behavior under various environmental conditions, espe- 
cially temperature changes. I t  also requires a continuing 
systematic assessment so that realistic constitutive rela- 
tions (stress-strain relations) can be considered and in- 
corporated in the stress analysis. In addition, it requires 
capabilities in advanced numerical techniques suitable 
to determine stresses in complex solid propellant grain 
configurations. Needless to say, all these areas require 
much additional work beyond the present state of the art 
in order to be able to analyze, with confidence, currently 

used solid propellant motors. Purely analytical techniques 
are applicable only to some of the most simple cases 
imaginable, and we must, therefore, resort to other ap- 
proaches that are believed to be more suitable for these 
problems. 

The upsurge of the finite element technique in struc- 
tural technology during the last few years has given a 
tool to the stress analyst which provides the flexibility 
as well as the versatility necessary for the analysis of 
structural problems with complex boundary conditions, 
complex loading conditions, and complex configurations. 
A vast literature exists about the finite element technique 
and its application, mainly to elastic and plastic static 
problems and to some steady state dynamic problems 
(e.g., Refs. 1 and 2). However, the extension of this tech- 
nique to viscoelastic problems has been accomplished 
only in a few relatively simple cases (e.g., Ref. 3). 

In the present report we first review some recent litera- 
ture in solid propellant thennoviscoelasticity in the light 
of recent deveIopments and with a view to a possible 
finite element approach. We then discuss some of the 
main ingredients of stress analysis and some of the under- 
lying assumptions related to the constitutive equations, 
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geometrical constraints, boundary conditions, and failure 
criteria. Some methods of stress analysis, in particular the 
finite element method, are reviewed in some detail. Spe- 
cifically, a finite element computer program for static 
linear elastic problems, called ELAS, is discussed with 
respect to its possible extension to handle linear thermo- 
viscoelastic problems. Finally, stress analysis results for 
various solid propellant motors are computed with ELAS 
and compared with similar analyses obtained by others 
using different analysis techniques. Additional results for 
two- and three-dimensional stress analyses and for 
Poisson’s ratio close to 0.5 are given. 

I I .  Review of Some Recent literature 

The analysis of solid propellant grains has occupied the 
attention of engineers for a number of years, and a con- 
siderable amount of literature, directly or indirectly re- 
lated to this problem, has been generated. For instance, 
Ref. 4 refers to 52 relevant publications. 

In a series of publications (Refs. 5-7), Biot developed 
a linear theory of thermoviscoelasticity based on the ther- 
modynamics of irreversible processes using Lagrangian 
methods of generalized coordinates. 

Shapery extended Biot’s theory to a special class of 
nonlinear behavior in Ref. 8 and demonstrated correlation 
with experimental results for unfilled and filled polymers. 
In Ref. 9, Shapery modified Biot’s theory by considering 
explicit temperature dependence of material properties 
and the inclusion of the time-temperature superposition 
principle for treating media with temperature-dependent 
viscosity. In Ref. 10, the linear, nonisothermal constitutive 
equations and energy equation of Ref. 9 were extended 
to nonlinear materials with transient, nonuniform tem- 
peratures; also, the temperature dependence of viscosity 
was introduced through the familiar assumption of ther- 
morheologically simple behavior, which is extensively dis- 
cussed in Refs. 11 and 12. 

In many linear problems, the elastic-viscoelastic cor- 
respondence principle of Alfrey (Ref. 13) is useful in 
obtaining solutions to viscoelastic problems. In particular, 
for solid propellant grains, as pointed out by Fitzgerald 
(Ref. 4), the elastic-viscoelastic correspondence principle 
is useful to obtain solutions to isothermal stress problems, 
isochoric pressurization problems, and certain gravita- 
tional slump problems. Provided the physical properties 
of the material are assumed to be independent of tempera- 
ture, an elementary extension of the correspondence prin- 
ciple ordinarily also permits a systematic reduction of 

viscoelastic problems with transient temperature fields 
to associated thermoelastic problems (Ref. 14). 

Muki and Sternberg (Ref. 15) dealt with the analysis 
of transient thermal stresses in linear viscoelastic solids 
with temperature-dependent material properties, where 
the underlying constitutive law rests on the temperature- 
time equivalence hypothesis, i.e., for thermorheologically 
simple materials. Even though there seems to be no com- 
prehensive method of solving this system of equations 
with time-dependent properties, Muki and Sternberg ob- 
tained the thermal stress field during transient tempera- 
ture conditions in two particular cases for a plate and for 
polar symmetry. 

Because the material properties of solid propellants are 
extremely temperature-sensitive, it is not possible, in gen- 
eral, to utilize the correspondence principle for their 
analysis if the thermal field is time-dependent. The cor- 
respondence principle is usually inapplicable also if the 
boundary of the region under consideration is moving, 
i.e., if the motion of the interior surface of the solid pro- 
pellant grain during burn must be accounted for in the 
analysis. Before applying the correspondence principle 
in the analysis of solid propellants, a thorough evaluation 
of its applicability should, therefore, be made. 

In employing numerical techniques for the stress anal- 
ysis of solid propellants, the correspondence principle 
can be applied with advantage only to isothermal and 
isochoric problems where synchronous separation of the 
variables is evident. A comprehensive review of such 
numerical methods is given by Parr in Ref. 16. 

To date, it seems that the only paper published in the 
open literature which directly applies the finite element 
technique to the analysis of linear thermoviscoelastic 
problems, without utilizing the correspondence principle, 
is by Taylor and Chang, Ref. 3. They considered spe- 
cifically axisymmetric and point-symmetric boundary 
value problems using the virtual displacement principle 
and employing a step-forward integration scheme, in 
time, to solve the set of equations under the assumption 
of thermorheologically simple behavior. The maximum 
number of equations handled was 20, and, because of the 
involved symmetries, only one dimension (the radial) had 
to be considered. The amount of computational effort, 
therefore, did not seem to pose great problems. However, 
Taylor and Chang indicated that the numerical integra- 
tions of the simultaneous integral equations are time- 
consuming and that some improvements are necessary 
before large arrays of elements can be analyzed. 
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Because of the above-described developments and the 
rapid increase in computational operations with the inclu- 
sion of additional spatial dimensions, the additional time 
dimension, and additional finite elements, it did not ap- 
pear economically feasible to modify or to extend existing 
general computer programs such as SAMIS (Ref. 17) to 
include analysis capabilities for the thermoviscoelastic 
response of propellant grains. Motivated by these con- 
siderations, Utku and Akyuz developed a computer pro- 
gram (ELAS, Ref. 18) that is capable of handling static 
elastic problems with the appropriate speed and efficiency 
to make it suitable for extension and inclusion of thermo- 
viscoelastic analysis capabilities. In this report, ELAS has 
been used for the computation of displacements and 
stresses in solid propellants under the assumption of 
linear elastic behavior only. Work to extend ELAS 
(Ref. 18) to include viscoelastic behavior also is presently 

only slight significance. Special assumptions about the 
geometry of the boundary are therefore not necessary. 

For the sake of generality and compactness, the equa- 
tions will be developed as far as possible utilizing the 
now-familiar tensor calculus in general curvilinear co- 
ordinates, as presented in Ref. 19. Definitions of metric 
tensors gij and gi’ and associated tensor manipulations 
are given in the same reference. 

B. loading 

The loadings of solid propellants for rocket motors can 
result from externally applied forces at the boundary; 
body forces, such as gravity forces, centrifugal forces 
and acceleration forces; and forces due to temperature 
changes. 

in progress. 
The external forces are mainly due to given internal 

pressures and shear stresses at the cavity boundary and 
to differential expansions of casing and grain under tem- 
perature changes. Body forces as a result of the earth‘s 
gravitational field may be of long duration during storage 
and may cause creep deformations leading to the so-called 
gravitational slump. Centrifugal forces occurring, e.g., 
during spin-up, and acceleration forces resulting, e.g., 
from impact loadings, vibrations, and launch are usually 

111. Components of Stress Analysis and 
General Assumptions 

In this section, the components of solid propellant 
stress analysis are delineated and defined as they are gen- 
erally used throughout the solid propellant industry. 

A. Geometry of short duration. 

The geometry of solid propellant grains is determined 
at the exterior surface by the rocket casing and at the 
interior by the grain cavity. While the exterior boundary 
can be considered constant, i.e., independent of time, 
certain equilibrium and compatibility conditions have to 
be satisfied at the propellant-casing interface. The interior 
boundary, on the other hand, changes its position appre- 
ciably during burn. Thus, the analysis must deal with a 
time-dependent, moving boundary. However, since the 
most critical problems of solid propellant analysis fortu- 
nately occur before burn, in this study we shall also 
assume a constant, time-independent interior boundary 
shape. 

While the exterior surface of the solid propellant fre- 
quently has a relatively simple configuration such as a 
sphere, a cylinder, or a sphere-cylinder combination, the 
interior cavity is very often quite irregular in design, 
showing, e.g., star-like configurations with slots, recesses, 
etc. Such configurations are particularly bothersome in 
a purely analytical formulation, where it is almost man- 
datory that the shape of the boundary be representable 
by a coordinate surface. With the use of the finite ele- 
ment method, however, the shape of the boundary has 

In determining thermal stresses, it  may sometimes be 
necessary, for very high strain rates, to consider the effect 
of the strain field on the thermal field. We shall assume 
here the applicability of the “uncoupled theory,” where 
the thermal field can be determined independently of the 
mechanical field, but where the effects of thermal changes 
in the constitutive equations of the material are consid- 
ered. The thermal field in the solid propellant is assumed 
to be given as a function of location and time. 

C. Boundary and Initial Conditions 

The conditions at the boundary of the solid propellant 
can be given by prescribed surface forces mentioned 
above, by prescribed displacements, or by interface con- 
ditions where the unknown stresses and/or displacements 
are determined using the appropriate equilibrium and 
compatibility conditions. 

At points on the bounding surface where stress condi- 
tions are prescribed, it is required that the internal 
stresses Pi, evaluated at the surface S, balance the ex- 
ternally applied forces. If n is the unit normal vector to 
the surface at the point under consideration (Fig. 1) and 
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characteristic functions of the material, when these are 
plotted against the logarithm of time. 

Fig. 1. Boundary point showing in two dimensions the 
curvilinear coordinate lines d1 and B z ,  the unit nor- 

mal vector n, the covariant base vectors g1 and 
g2, and the externally applied force 

vector t, 

the gj are the covariant base vectors referred to an arbi- 
trary curvilinear coordinate system, then the externally 
prescribed force vector t, at this point requires that 

At points on the boundary where the externally pre- 
scribed displacement vector is u ( ~ ) ,  it is required that the 
displacement vector evaluated at the boundary satisfy 

The initial conditions will be specified so that all field 
quantities, displacements, velocities, stresses, strains, etc., 
vanish for t < 0. 

D. Material Properties 

The support for solid propellant grains is sometimes 
provided not only by the motor casing but also by inter- 
nally placed reinforcing wires or fibers. Solid propellant 
grains therefore frequently exhibit anisotropic proper- 
ties, which are characteristic of composite materials. Al- 
though the structural response of the grain material is 
often nonlinear, we assume linear behavior as a fkst step 
toward the analysis of such general materials. We assume 
further that the material behaves in a thermorheologically 
simple way, showing, for changes of temperature, a pure 
shift in the creep functions, relaxation moduli, and other 

Let Eijkr (t) be the general anisotropic relaxation mod- 
uli of the fourth-order material property tensor, which has 
the following symmetry properties: 

and therefore has 21 independent camponents. 

To express thermorheologically simple behavior ana- 
lytically (Refs. 11 and 12) we define a “reduced time” by 

(4) 

where aT is the time shift function and T is the tempera- 
ture. For each relaxation modulus the following relation 
holds : 

Equation (5) states that the relaxation moduli at an arbi- 
trary temperature T corresponding to time t are expressed 
by their behavior at the reference temperature To related 
to the new “reduced time scale f‘. 

The time shift function uT in Eq. (4) is an experimen- 
tally determined function (Ref. 20) of temperature T 
only; its dependence on position x and time t is implicit 
through T and is well described by the Williams-Landel- 
Ferry (WLF) equation, 

ak =exp [ - 6, C 1 ( T  + ( T -  - T g )  Tg) 1 
where Tg is the glass transition temperature of the poly- 
mer and C,  and C,  areconstants. 

The difference between the local instantaneous tem- 
perature T (x, t )  and the conveniently selected reference 
temperature To, for which a zero stress and deformation 
state is assumed, is the thermal field history designated by 

(7) I3 (x,Y) = T (x, t )  - To 

The linear coefficients of thermal expansion ai, repre- 
sent a second-order symmetric tensor with six indepen- 
dent thermal expansion coefficients in the general case. 
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The coefficients ai1 (T’) usually we functions of tempera- 
ture. We then define the average coefficient a k f  (T)  by 

With the strain tensor y k t ,  the general linear viscoelas- 
tic constitutive equations can now be written in the gen- 
eral form of hereditary integrals as 

a k t  (T) = $/T ah (T’) dT’ (8) 
Tu 

J - m  

where1 the argument [ (x, t)  - t’ (x, t‘) is obtained using 
Eq. (4) and is in general a complicated nonlinear func- 
tion of time. Because of this nonlinearity it is not possible 
to remove the time dependence by taking Laplace trans- 
forms of Eq. (9), i.e., the dependence on time of the tem- 
perature; and hence the shift function makes it, in general, 
impossible to invoke the correspondence principle. 

In terms of mixed tensors, Eq. (9) becomes 

For isotropic material the mixed stress and deforma- 
tion tensors can be split into dilatational and deviatoric 
parts. With the Kronecker delta s t ,  the deviatoric stress 
tensor si and the deviatoric strain tensor e: we obtain 

. 1 .  
3 3  

7! =-sg7; + Sf 

The mixed material tensor for the isotropic case be- 
comes, with shear modulus G ([) and bulk modulus K (t), 

while the tensor of the average thermal expansion co&- 
cients becomes 

‘The usual summation convention is used. 

Substituting Eqs. (11)-(13) in Eq. (10) and multiplying 
yields two independent constitutive equations as follows: 

(1) The dilatational equation, 

(15) 
a 6 (x, t )  = 3 1 : ~  (t - t’)2 (yg - 3ae) de 

(2) The deviatoric equation, 

(16) 
a .  

at‘ 
G ( t  - t‘)-e;dt‘ 

For the isotropic elastic material, we have 

e = 3~ - 3ae) 

si = 2Gef 

or 

(19) 

where v is Poisson’s ratio. 

Frequently it can be assumed that in isotropic material 
only the deviatoric part responds viscoelastically (Eq. IS), 
while the dilatational part responds elastically (Eq. 17). 
A further assumption that is often justified for viscoelastic 
analyses is that the material is incompressible. In such 
cases, only Eq. (16) or Eq. (18) is used for viscoelastic or 
elastic analysis, respectively. 

Many solid propellants have Poisson’s ratio close to 0.5, 
i.e., they behave very nearly incompressibly. The assump- 
tion of incompressibility would, therefore, introduce only 
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small errors. However, in using the finite element tech- 
nique, the numerical difficulties encountered by this 
assumption seem to outweigh by far the analytical sim- 
plifications frequently realized in purely analytical work. 
In this report we shall, therefore, always assume that the 
material is at least slightly compressible, and we shall 
show for elastic materials, utilizing the finite element 
technique, the behavior of some numerical results close 
to incompressibility. 

E. Fai lure  Criteria 

The structural systems of solid propellant motors con- 
sist of a relatively weak propellant grain of elastomeric 
or polymeric binder loaded with a high percentage of 
granular fuel and metal oxidizer, surrounded by a metallic 
or composite material case which provides the essential 
structural resistance against the forces due to pressuriza- 
tion and thermal strains. Because of pressurization and 
thermal changes, we encounter large strains near the 
burning surface and near the interface between grain 
and casing, owing to large thermal expansion differences 
and large differences in the relaxation moduli of the 
adjacent materials. If the strength of the grain material 
at these strain levels is inadequate, grain‘failure will be 
caused by cracking or by interface failure between grain 
and casing. Although the cracking and interface failures 
do not seriously impair the structural strength of the 
motor, they can seriously reduce its operational capa- 
bility. 

Failure analysis of the motor has, therefore, the two- 
fold requirement of deformation and strength analysis of 
the case and deformation and strength analysis of the 
grain. The former analysis is mainly concerned with 
structural integrity, while the latter is mainly concerned 
with operational integrity. The case analysis can be han- 
dled reasonably well with present structural mechanics 
technology, while the grain analysis requires extensive 
fundamental work at the research level for the develop- 
ment of reliable failure criteria. This need exists because 
the filler-binder compound can be considered as a rea- 
sonably continuous medium only at relatively small 
strains. It loses its continuity at strains that are consid- 
erably below those at which cracks actually start to 
propagate throughout the medium. Unfortunately for the 
application of continuum mechanical theory to grain 
analysis, particularly close to failure, the level of maxi- 
mum operational strains due to pressurization and to 
thermal cycles is within this intermediate quasi- 
discontinuous range of behavior. Hence, we are dealing 
here with a quasi-static time-dependent accumulation of 
breakdown of the material until catastrophic fracture 

occurs. This is an irreversible kinetic process that starts 
with imbedded minute disturbances such as flaws, par- 
ticles, etc., which randomly permeate the material, and 
ends with the uncontrollable propagation of at least one 
crack. Thus in a “homogeneous” grain material there is, 
at each point, the potential for generating a multitude of 
cracks for a given excitation. Often many cracks are ini- 
tiated very early after loading; however, the density of 
continuously growing cracks seems to decrease sharply 
with the passage of time, and rupture is usually observed 
to be the result of the rapid propagation of only one or 
two cracks, while the remaining potential cracks remain 
dormant. For this reason, fracture theories employing the 
expedient concept of a single critical flaw are often quite 
successful in practice. To a large extent, it is also for this 
reason that in failure analysis using the concepts of proba- 
bility theory, we employ the theory of extreme value 
statistics, in which we ask for the probability distribu- 
tions of extreme flaw sizes. 

Knowing the extreme flaw size distributions in the 
material by assumption or from experiment, and having 
computed the internal stress state histories in the solid 
propellant grain, we must establish a causal relationship 
between (1) the state of stress history at a point and 
(2) the accumulation of breakdown, i.e., the increase of 
flaw size until it reaches its critical value at rupture. We 
can then predict the probability of failure or the relia- 
bility of a solid propellant grain at each point and as a 
whole. 

While comparatively much work has been done in the 
area of determining bulk stress state histories, as dis- 
cussed in the previous section, very little is available in 
the area of fracture in viscoelastic materials subjected to 
multiaxial stress states. However, the works that have 
been published in this area and closely related areas, 
e.g., Refs. 21 and 22, show that promising steps can 
be, and are being, taken toward the solution of these 
problems. 

IV. Methods of Analysis 
This section gives the analytical background and devel- 

ops some basic equations for the finite element technique 
as applied to linear viscoelastic materials. In this discus- 
sion we start with the general case of anisotropic 
temperature-dependent materials and successively reduce 
the equations to the particular case of elastic materials. 
Using Laplace transform techniques, it is shown for what 
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cases and under what conditions the solutions of the cor- 
responding elastic problem are applicable. We then dis- 
cuss in some detail the capabilities of the ELAS program, 
with specific reference to its applicability to solid pro- 
pellant stress analyses. 

A. Analytical Background 

The general field equations of linear thermoviscoelas- 
ticity are: 

(1) Equilibrium equations (neglecting acceleration 
forces), 

(2) Strain-displacement equations, 

(3) Constitutive equations, 

r t  '3 

where (, (Ykf, and 8 are as defined in Section 111, and 
where f j  is the contravariant component of the body force 
per unit volume. 

The complete statement of the problem requires the 
specification of the boundary conditions and initial con- 
ditions as given in Section 111. 

The virtual work is obtained from Eq. (20). Multiply- 
ing through by gj, recognizing that 

I gj = '1 (g% g.) . 3 Y 2  

(Ref. 19): multiplying by the virtual displacement of 6u, 
and integrating over the volume V under consideration, 
yields 

By the usual procedure of applying Gauss' theorem and 
converting the first term in Eq. (23) (Ref. 19) to a volume 
and surface integral, we obtain the principle of virtual 
work, 

which states that the work done by the internal stresses 
T ~ J ,  when going through the virtual strains 6yj4, is equal 
to the work done by the body forces f and by the forces 
tn at the surface S with surface unit normal n when going 
through the virtual displacements 6u. 

Equation (24), together with Eqs. (21) and (22) and 
the assumptions of Section 111, is necessary to formulate 
the finite element approach to viscoelastic problems. 

B. Finite Element Method 

A general approach to the solution of elasticity prob- 
lems and other continuum problems is provided by the 
finite element method, which has been used extensively 
during the last decade to solve problems of linear elas- 
ticity. As mentioned above, very few papers treating other 
than linear elastic or plastic problems have been pub- 
lished. 

The finite element method, based on the essential ideas 
of the well-known approximation techniques of the Ritz 
procedure of assuming a displacement field with a suf- 
ficient number of undetermined parameters, is versatile 
enough, within the limitations of finite elements, to ac- 
commodate complex configurations, boundary conditions, 
loadings, and material properties. In the limit, as the 
finite element sizes tend to zero as their number for the 
same domain increases indefinitely, it is expected that 
the results approach their actual true values, although 
this has not yet been proved for other than simple cases 
with assumed linear deflection functions. 

In the finite element method, the domain for which 
displacements and/or stresses are to be computed is sub- 
divided into suitably small subdomains called elements, 
which are connected to each other at the nodal points. 
The purpose is to obtain a Ritz-type approximate solution 
for each element in terms of the unknown displacements 
at the nodal points, and then, by imposing the equi- 
librium at the nodal points to establish the set of equa- 
tions to be solved in order to yield the solution for the 
entire domain. 

In the following brief development of the finite element 
method, we start with the assumption of a rheologically 
simple material. Without loss of physically and proce- 
durally meaningful generality, we refer to a rectangular 
Cartesian coordinate system in which covariant deriva- 
tives become partial derivatives and in which no differ- 
ence exists among covariant, mixed, and contravariant 
tensor components. 

JPl TECHNICAL REPORT 32-1253 7 



Substituting Eq. (22) in Eq. (24) gives 

We now subdivide the entire body under consideration 
into volume elements (finite elements) which are con- 
nected to each other at the nodal points. In the Ith vol- 
ume element with volume VI, we assume a displacement 
field of the following form: 

where the q(i)  are assumed functions of position, the 
q( i )  (t)  are the unknown time-dependent generalized co- 
ordinates, and the subscripts in parentheses indicate that 
these quantities are not vector components. The spatial 
functions q( i )  (x) are to be chosen so that compatibility 
at the boundary between adjacent elements is preserved. 
There are as many generalized coordinates associated 
with an element as nodal displacement degrees of free- 
dom. Using matrix notation, Eq. (26) can be written in 
the form 

where { } and [ ] indicate, respectively, column and 
rectangular matrices. 

The nodal displacements are equal in number to the 
generalized coordinates and are 

in which the matrix [@] is formed by successively intro- 
ducing each nodal point coordinate into Eq. (27). The 
matrix elements in Eq. (28) are, thus, not functions of x. 
We solve for the generalized coordinates by 

Using Eqs. (21) and (26), we are able to form a column 
matrix of the strain components { v }  in terms of the gen- 
eralized coordinates 

J F  Js 

where the elements of the rectangular matrix [*I] are 
functions of x involving q(i) and their derivatives. Using 
Eq. (29) and the transpose law for matrix products, the 
transpose of the column matrix of the variation of the 
strain components in Eq. (25) becomes, in matrix notation, 

{Sy}T = {SU}" [@-'I' [q]' (31) 

If [E] is the matrix of the material property functions 
E i i k g ,  if {a} is the column matrix of the mean thermal 
expansion coefficients a k r ,  and if {tn} is the column matrix 
of the nodal force components, then, from Eq. (25) with 
Eqs. (27), (29), (30), and (31), we obtain 

t a  
[E] {ea} dt' dV, 

In order to define the problem completely, we must 
specify two types of connecting conditions at each nodal 
point: the equilibrium conditions and the compatibility 
conditions. The equilbrium conditions specify that at each 
nodal point the sum of all nodal forces t, of the adjacent 
elements and 'of the externally applied forces F vanishes. 
The compatibility conditions require that at each nodal 
point the adjacent elements undergo the same displace- 
ment. Substituting Eq. (32) in the equilibrium conditions 
and utilizing the compatibility conditions, we obtain a 
set of linear integra1 equations with the nodal displace- 
ments {U} as unknown functions and the externally ap- 
plied forces F as inputs. In addition, we have to impose 
boundary conditions at the boundary nodes and initial 
conditions at all nodes as indicated in Section 111. 

The matrix elements Et*kI are functions of the reduced 
time 5 which is, in general, a nonlinear function of time 
because of Eq. (4). The Eiik, are, therefore, nonlinear 
kernels in the set of integra1 equations, and the Laplace 
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transform and, hence, the elastic-viscoelastic correspond- 
ence principle cannot be applied. If the material prop- 
erties are independent of time, i.e., in the present case, if 
the thermal field is independent of time, or if the material 
properties are independent of temperature, then the ma- 
trix elements E i j k r  in Eq. (32) are functions of (t - i?). 
Hence, we are then able to apply the Laplace transform 
to Eq. (32). If p is the transform variable and if the barred 
functions indicate transforms, we obtain 

(33) 

If we identify the elements [pE] with the correspond- 
ing elastic moduli and the transformed quantities with 
the corresponding elastic quantities, Eq. (33) represents 
the formulation for the corresponding elastic problem, 
where the first volume integral on the right side of 
Eq. (33) represents the usual element stiffness matrix. 

It follows that, given a linear elastic solution, the cor- 
responding viscoelastic transformed solution for a par- 
ticular p is obtained by substituting for the corresponding 
quantities the p-multiplied transformed viscoelastic mod- 
uli, pi!?;, Tcl ( p ) ,  the transformed product of the thermal 
field and the expansion coefficients, z ( p ) ,  and the trans- 
formed body forces 6 (p), and by considering < (p) and 
O(p) as functions of p. 

6. The Computer Program ELAS 

A computer program that can be used in the studies 
described above must have some special features. It 
should reflect all possible capabilities offered by con- 
temporary studies in the field of the finite element 
method. Factors that restrict the use of this method, such 
as excessive computing time, limited storage capacity of 
computers, and accumulation of round-off errors, must be 
minimized. These factors are not completely independent 
of each other, i.e., the computing time increases dras- 
tically by the use of out-of-core devices for the increase 
of the storage capacity, and the use of double-precision 
arithmetic to decrease the effects of round-off errors de- 
creases the storage capacity and increases the computing 
time. Therefore, a computer program that will be used 
for these purposes must be as efficient as possible in using 
core memory space, shortening computing time, and re- 
ducing round-off errors. The computer program ELAS, 

developed in Ref. 18, has been prepared to achieve this 
goal. Its special features are summarized below: 

Types of structural problems that can be handled 
are frames, stretching and bending of plates and 
shells, two- and three-dimensional elastic solids, 
and axisymmetrical shells and solids. 

The dynamic memory allocation allows the use of 
adequate storage space for a given problem. This 
also provides access to a larger core memory ca- 
pacity if larger-scale computers become available. 

An automatic relabeling procedure that minimizes 
the bandwidth of the stiffness matrix is incorpo- 
rated. 

The boundary conditions are imposed at the time 
of assembly of the coefficient matrix. This elimi- 
nates unnecessary use of core memory by coeffi- 
cients of equations to be eliminated later. Every 
type of displacement and force boundary condition 
that arises in practice can be imposed. 

For continuous structures, the stresses can be com- 
puted either as average values in the elements, or, 
by spending a little more computing time, they can 
be computed at the nodal points by using the best- 
Et strain tensor in this region. 

The structural material may be isotropic, ortho- 
tropic, or general anisotropic. It may be ho- 
mogeneous or nonhomogeneous. The effects of 
temperature changes for all types of structures and 
the effects of temperature gradients for frames, 
plates, and shells can be computed. The body forces 
due to arbitrary constant acceleration fields can be 
considered. 

The capacity depends on the type and number of 
elements, the bandwidth of the stiffness matrix, 
and the number of unknowns that are being re- 
tained after the imposition of boundary conditions. 
For an average type of problem, 500-700 unknowns 
can be handled on the IBM 7094 (32K) Model I 
computer in less than 5 min. 

The complete treatment of these features and the guide 
for using this program are presented in Ref. 18. Although 
this program, in its present form, is strictly for use in 
solving linearly elastic problems, during its development 
more general stress analysis problems have been antici- 
pated. Its overall structure can easily be altered by the 
addition of subroutines; or the subroutines that have been 
developed for this program can be used with other driv- 
ing main programs for different purposes. 
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Before any further development beyond linear elas- 
ticity, the use of ELAS, as it now stands, will help to 
understand and clardy many of the complex problems of 
solid propellant stress analysis. Further program develop- 
ments into the area of linear and nonlinear viscoelasticity 
will then follow along lines indicated in the sections 
above. 

V. Results of linear Elastic Studies 

In this section, some examples of linear elastic stress 
analysis for the cylindrical axisymmetrical motor grains 
and for the spherical motor grains are presented. The 
objectives are: 

To provide some explanation of the steps that lead 
to the complete analysis of a given case. The com- 
plete analysis covers the choice of the various 
models and the geometrical and physical idealiza- 
tions of the chosen model, Le., mesh topology and 
material properties, boundary conditions, loadings, 
the choice of regions of interest, the comparison 
and the interpretation of the results, and the im- 
provement of the results, if necessary. 

To compare the results obtained here with those 
previously obtained by others in Refs. 23 and 24. 

To emphasize various factors that are involved in 
obtaining meaningful results and that can be 
chosen correctly only if the analyst uses his experi- 
ence and judgment in each new case. 

The numerical results in this report were obtained by 
using the computer program ELAS and some additional 
subroutines. The cases considered in these studies repre- 
sent only a small portion of the different possible cases 
that can be studied. Other complex models with complex 
boundary conditions, loadings, and material properties, 
such as variable temperature changes, anisotropic mate- 
rials, combined analysis of grains and casings, more com- 
plex casing shapes, etc., can be studied if necessary. 

A. Nike-Zeus Booster Grain Stress Analysis 

The analysis of stresses has been carried out in order 
to compare the results obtained in this analysis with the 
ones available in Ref. 23, in which the stresses were 
obtained from the force method program and the photo- 
elastic method and compared favorably with each other. 

One-tenth of the axisymmetrical cross section was con- 
sidered, as shown in Fig. 2. The boundary conditions, 

which are a result of the idealization of the physical 
model, are such that the boundary between the segments 
is restrained in the tangential direction, but is free in 
the radial direction. The external pressure loading was 
chosen for the analysis in order to obtain results directly 
comparable with those in Ref. 23; the material constants 
were also the same as in Ref. 23. The inner and central 
regions were divided into finer meshes, since these are 
the regions where high stress concentrations occur. 

Figure 3 illustrates the comparison of tangential stresses 
along the hoop region. This figure corresponds to Fig. 1 
of Ref. 23. The results of this study show an almost per- 
fectly symmetrical distribution of stresses with respect to 
the symmetry axis of this region. In Ref. 23, the corre- 
sponding stress values are unsymmetrical, a result that 
might be due to the idealization of the hoop region by 
an unsymmetrical configuration of the bars and panels. 
However, both results are relatively close to each other. 

Figure 4 illustrates the comparison of radial and tan- 
gential stresses shown in Fig. 4 of Ref. 23. The agree- 
ment in both cases is very good. 

For this analysis, the computer time spent was less than 
4 min on the IBM 7094, Model I. The total number of 
unknowns and equations was 707. This large number 
of equations could be accommodated by ELAS because 
of the relatively small bandwidth of the stiffness coeffi- 
cient matrix. As has been shown in Ref. 18, this band- 
width is a function of the mesh topology and the labeling 
of the nodes. 

An analysis similar to the one above has been carried 
out with a coarser mesh and a smaller number of ele- 
ments and nodes. The mesh is shown in Fig. 5. The size 
and location of the region with a refined mesh is the 
same as in the previous case. A comparison has been 
made only for the deflection, and the numerical results 
agreed remarkably well with the corresponding ones ob- 
tained above, although the coarse mesh results are, in 
general, somewhat lower. 

B. Two- and Three-Dimensional Analysis of 
Spherical Motor 

Three different models have been chosen: (1) an axi- 
symmetrical model with truncated inner star vertices, 
(2) a three-dimensional longitudinal slice of a half star, 
and (3) a two-dimensional transverse section passing 
through the center of the sphere. 
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In each case the grain material had a relatively low 
modulus of elasticity, with Poisson’s ratio equal to 0.45 
or 0.4995. The loading consisted of pressure acting only 
at the inner surface. The outer casing was treated as an 
axisymmetrical membrane shell, a spherical membrane 
shell, or a truss element corresponding, respectively, to 
each of the cases cited above. Since the deformation of 
the grain without the supporting casing is of the order 
of 0.10 in. or more, the 0.015-in. distance between the 
casing and the grain along the unbonded region is as- 
sumed to vanish during the early phase of deformation, 
and the grain is assumed to be supported completely by 
the casing during loading. A more realistic but more cum- 
bersome procedure (not considered here) would be to 
solve the problem in two steps: (1) determine the load- 
ing and the stresses for which the unbonded surfaces 
touch the membrane and (2) superimpose the effect of 
complementary loading on the results obtained in the 
first step. This approach could be of interest for some 
specific stress-analysis problems. 

The boundary conditions are assumed to be such that 
the outer perimeter of the transverse section at the nozzle 
end is completely fixed, while the inner perimeter at the 
opposite end is fixed only in the radial direction. 

1. hisymmetrical model. The geometrical idealization 
and the mesh topology are shown in Fig. 6. Two series 
of results were obtained for two types of boundary con- 
ditions, with Young’s modulus equal to 10,000 psi and 
Poisson’s ratio equal to 0.45. The displacements of the 
inner boundary of a typical section passing through the 
center of the sphere and corresponding to the boundary 
conditions shown in Fig. 6 are plotted in Fig. 7. If the 
boundaries are released and only one restrained in the y 
direction is imposed at nodal point 9, which is a mini- 
mum of restraint necessary to provide static stability, the 
radial displacements remain almost constant, while the 
displacements in the y direction increase 4 5  times. 
The physical interpretation of the boundary conditions 
of Fig. 6 is equivalent to a ring stiffener at both ends of 
the case and a perfect bond between the case and the 
grain along the outer ring at  the nozzle end. The value 
of the ring load which arises from this hypothetical bond 
is given in Fig. 7. 

The same computations as those above have been made 
using a grain material with Poisson’s ratio equal to 0.4995. 
The resulting displacements were approximately 23 
times smaller than those above, which is to be expected 
because of the increased bulk rigidity in the latter case 
(Fig. 8). Another set of computations has been done to 

determine the effect of the rigidity of the casing. When 
the modulus of elasticity of the grain is being decreased, 
holding all other variables constant, the stresses in the 
grain approach a hydrostatic state, while the stresses in 
the casing increase considerably, as is to be expected. 
Figure 9 illustrates a comparison of the radial stresses 
along a transverse section for two different thicknesses 
of casing. The peak stresses clearly approach the hy- 
drostatic pressure equal to that applied to the inner 
boundary. 

2. Three-dimensional model. A longitudinal slice of 
2 5 O  42’ 51” has been isolated and analyzed as substitute 
for the complete three-dimensional model. The model ob- 
tained has been divided into hexahedrons, and the mesh 
topology is shown in Fig. 10. The outer boundary of the 
model is encased in a steel membrane shell that is sup- 
posed to be perfectly bonded to the grain at the nodes. 
The inner boundary is free and subject to pressure. The 
two interfaces of the slice with the other portions of the 
motor are assumed to be free along the slicing plane, 
but restrained in the orthogonal direction. The boundary 
conditions at the nozzle and head ends are similar to 
those of the axisymmetrical model. Results have been 
computed for 600 psi internal pressure, using a modulus 
of elasticity of 1300 psi and a Poisson’s ratio of 0.4995. 
The comparison of the stresses along the transverse plane 
and the displacements along the inner boundary and 
transverse plane with the results of the previous axisym- 
metrical case is given in Figs. 11 and 12, respectively. 
The plane section in the three-dimensional model was 
inclined less than 5 deg, but it was assumed that the 
comparisons were still valid. Remarkably good agree- 
ments were obtained in all points except at those that 
are close to singular points such as sharp corners. 

3. Transverse section model. Two-dimensional analyses 
of a transverse section model have been carried out 
for two different mesh topologies. In both cases, it was 
assumed that the section was of unit thickness of an 
infinitely long cylinder having the star-shaped section of 
the spherical motor. This then corresponds to a plane 
strain problem, and no three-dimensional effects exist. 
The case and the grain are, therefore, more flexible than 
the true spherical model. In fact, the displacements were 
approximately twice as large, and qualitative observa- 
tions show that the radial displacements along the radial 
line passing through the hoop region have a similar pat- 
tern to those obtained in the axisymmetrical model. Two 
sets of radial displacements, corresponding to the irregu- 
lar mesh of Fig. 13 and the regular mesh of Fig. 14, 
respectively, are plotted in Fig. 15. The refinement of the 
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Fig. 3. Distribution of tangential stresses along the hoop region of the inner boundary 
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mesh (Fig. 14) results in an average increase of approxi- 
mately 15% of the displacements. 

The stresses along the same line have also been plotted 
in Fig. 14. For the irregular mesh the results are different 
from those obtained in the previous models and from 
those obtained for the regular mesh of this model. Quali- 
tative and quantitative interpretation suggests that an 
irregular mesh can lead to erroneous results in the stress 
computations and should, therefore, be avoided. 

An important point that might be useful in the initial 
preparation of a problem is that the use of quadrilateral 
elements in two-dimensional, and hexahedral elements 
in three-dimensional, problems will considerably facili- 
tate the use of the subroutines described above. Also, the 
final stress results are usually improved by the use of 
such elements. 

Other computakons with different values for the mate- 
rial constants were carried out in order to determine the 
contributions of round-off errors. For values of Poisson’s 
ratio not close to 0.5, these effects were negligible for 
the problems considered here. The round-off errors are 
reflected in the computation of forces acting on the nodal 
points, i.e., the deviation of these forces from their true 
values is a measure of the effects of round-off errors. The 
use of the double-precision version of the subroutine for 
the solution of the equations decreases the effect of the 
round-off errors approximately 10 times. The effects on 
the final stress and displacement results are not appre- 
ciable. A double-precision assembly program for two- 
dimensional problems decreases the effects of round-off 
errors approximately 100 times. The effects on the final 
results are only a few percent. 

considerably complex problem. For more complex geom- Because the double-precision program has limitations 
of storage, for ELAS the storage locations for such corn- 
putations do not exceed 10,000, For single-precision corn- 

boundary conditions, loadings and prop- 
erties, corresPondinglY more comPutational efforts Will 

putations using E ~ S ,  this number is than 20,000. 
ne conc~usions of this study are that even with values of 
Poisson’s ratio close to 0.5, the program can be used with 
confidence in its present form to obtain displacement 
results. 

have to be spent toward the determination of stress dis- 
tributions in propellant grains. Critical areas in this 
respect are the Preparation of input data and the inter- 
pretation of the numerical results. A general scheme for 
the automation of input operations and for the automated 
interpretation of the results in the form of graphical 

Another way of obtaining improved stress results is to 
isolate a small portion of interest from an entire region 
and analyze this portion as a separate problem. In this 
case the boundary conditions at the interface between 
the isolated portion and the remaining part will be the 
deflections of the nodal points from a coarse preceding 
analysis for the entire region. 

During the course of this investigation, some additional 
subroutines were prepared for (1) the generation of the 
mesh topology and the coordinates corresponding to the 
axisymmetrical model and (2) the generation of the mesh 
topology corresponding to the transverse section analysis. 
With a few minor changes, these programs can be used 
for a number of other mesh topology configurations. 

VI. Conclusions 
This report is a first step toward the development of 

capabilities for the stress analysis of solid propellant 
rocket motors consisting of thermoviscoelastic propellant 
grains and metal or composite material casings. It has 
been pointed out that the main difficulties at present in 
the determination of the stresses are associated with the 
lack of adequate computational techniques and with the 
fact that the constitutive properties of the materials are 
in many cases insufficiently known. This holds especially 
true for the prediction of the strength and failure prop- 
erties of solid propellant grains. 

The study of the elastic response of various grain con- 
figurations in the latter part of this report shows that 
even using the simplest form of constitutive equations, 
the analysis of stresses in solid propellant motors is a 

- -  
dispfays is, therefore, highly desirable. 

The formulation of the linear viscoelastic problem in- 
dicates that only for rather special cases can the elastic- 
viscoelastic correspondence principle be applied, i.e., 
when the material properties are independent of thermal 
changes. Since the properties of almost all solid propel- 
lants are highly temperature-sensitive, it seems that the 
development of a program based on this principle is of 
considerably less value than the development of a pro- 
gram which does not utilize the correspondence princi- 
ple, i.e., which solves a set of integral equations as pointed 
out in Section IV. Also, in view of possible extensions to 
nonlinear problem applications, the latter approach seems 
to be more attractive. 
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